
Introducing AI in Biomedical Science

Computing power, data handing capacity and the ability to automate science
have been increasing roughly exponentially since the 1960s [1]. These
technological leaps have transformed all areas of society, science, including
biology and, of particular relevance here, many areas of drug discovery and
development. In the past few years, a key emerging trend in relevant
biomedical technology has been the introduction of Artificial Intelligence (AI) as
a tool to handle the vast torrents of data and to help discover organising
principles hidden within these data. There are already many embodied
examples of AI used in healthcare and the diverse spectrum of applications
ranges from the development of small, often wearable, devices that recognise,
record and monitor physiological biomarkers generated by biological function
(e.g. Heart rate, Blood Pressure, Respiration rate & Temperature) and give us
indications of our general health status, all the way to AI driven computational
platforms that can process thousands of clinical samples in seconds to identify
potential pathology in medical images [2]. 

A brief look at any vivarium today whether academic, biotech, government or
pharma shows that these developments are already starting to have an impact
on how experiments are designed and performed. Efforts over the last 30 years
have seen many elements of computer vision, machine learning and AI
deployed for the capture, analysis and tracking of animals in behavioural
assays [3][4][5]. However, the application of AI in the area of animal welfare in
the vivarium is more limited. Welfare assessment remains predominantly
manual and relies on time and resources to check individual animals for health
and well-being as frequently as needed. We check for signs of disease, we
check for signs of efficacy with specific challenge tests, yet apart from cursory
welfare checks and the key experiments, our animals in research studies spend
the vast majority of their lives left entirely unobserved in their home cages. 
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The Scope of AI — from Databases to Biomarkers

Big tech and big pharma have a history of high profile partnerships and many
of these include leading names in AI including Amazon, Apple, Google, IBM,
Meta to name but a few, but the key advances appear to be mostly in data
handling, mathematical and chemical modelling as well is in the areas of
proteomics and metabolomics [6]. The ability of AI to scan vast libraries of
compounds and match these with therapeutic areas and specific 3D models of
molecular targets is fairly easy to understand. These include areas of drug
design [7] and pharmacokinetic prediction [8].

There is little debate on the benefits of AI where it is already used to scan
large databases and collate the most up to date information on standards of
care and clinical practice, to manage workflows and discover new knowledge.
However, how do we take these opportunities and apply the power of AI to
the ethical treatment of animals in a preclinical laboratory setting? The
application of AI to the home cage provides an unparalleled opportunity to
improve welfare and gather orders of magnitude more data points for
preclinical research. This is the challenge that the scientists and engineers at
Actual Analytics endeavour to answer, and while the value of true Home Cage
Monitoring is readily apparent to those already using such technologies [9]
[10][11][12][13], the vast majority of vivarium staff are only just beginning to
see the potential.

We firmly believe the lack of adoption of AI for automated behavioural
analysis represents two broad sets of opportunities that we cannot afford to
miss: First, continual, and automated behavioural monitoring removes much of
the technical handling required for welfare assessment (reduced stress) while
at the same time filling in the gaps that would be unobserved in traditional
assessment methods. Second, the same data stream is equally relevant to the
study and represents valuable additional data that can be used to test safety
and efficacy, perhaps even replacing additional studies entirely.



A key point of synergy between modern AI techniques, and the longitudinal
data produced by continuous monitoring, is the potential to combine diverse
streams of complex data to create new compound biomarkers in the digital
domain. The use of such digital biomarkers in clinical studies is[IM1]  well
documented, and all signs are that these are increasingly important in clinical
efficacy studies. For example, Phase 2 clinical studies for efficacy increasingly
rely on digital biomarkers to track patient locomotion and vital signs
throughout the duration of a clinical trial. It has been noted that such digital
technology allows study directors to collect important biometric data and also
encourages compliance with the study. The ability to collect data in real time
or in near real time, and to be able to interact with this has multiple
implications ranging from identifying the correct populations for studying the
efficacy of a particular drug as well as improving the management of
resources during a study. In the preclinical sphere there has been scarce
insight as to how and what AI will do to enhance the well-being of the
animals we use for in vivo experimentation. However, there is already
evidence that AI utilization is being effectively applied to veterinary, livestock
and free-living large animal areas [6], [14]. 

Monitoring the Individual – the Key to Mitigating Risk
Actual Analytics Ltd is a pioneer in the area of Home Cage Monitoring of
individual animals in grouped housing. The ability to monitor at a cohort level
is integral to preclinical efficacy and safety studies but the ability to monitor
individual animals, remotely and at all times through the length of a preclinical
in vivo drug trial, is also important. This ability to monitor an individual within
a group is a feature that remains largely elusive to other products in the sector
– yet it is of crucial importance – especially when one considers the value of
translating preclinical observations to the domain of clinical trials, where
potential insights hinge on an accurate understanding of the variation
between individual participants.



Perhaps surprising to some, there is a preclinical correlate of these
preparations where we should be carefully assessing the baseline behaviour
of our animals; their physical condition, background circadian rhythm and
home-cage dynamics. These should be all be known and where relevant, be
within satisfactory levels prior to initiating an in vivo experiment. These
parameters can then be followed closely during the experiment and changes
from the previous base-line attributed to the research condition. Thus,
continuous monitoring of animals before as well as during the study mitigates
the risk of experimental failure due to animals that are in bad condition, are
not suited to their home-cage grouping and/or not full acclimatized to their
test environment or are extreme behavioural outliers.

It is now well known that careful selection of relevant individuals and active
engagement and education of trial participants are important precursors to
high quality clinical trials. These steps provide assurance that the participants
are relevant to the study, that the test regime is understood and therefore
compliance with it will be more likely. In turn this reduces the likelihood that
participants drop out of studies resulting in study failure due to being
underpowered or because the study is skewed by inappropriate inclusion of
the wrong participants. The readiness to enter a clinical trial, the physical
condition of the participant and the ability of the participant to be supported
by social structures (friends, family, caregivers) are all issues that need to be
addressed.



Figure 1. Examination of social separation in the home cage. Spatiotemporal data,
such as those measured by ActualHCA, allow the operator to focus on each individual
animal over long periods of time. In the example above extreme changes in social
distancing by an individual within the group can be used as a possible indication of
depression, anxiety, unsettled home cage dynamics and a possible general lack of
wellbeing for that individual animal. Mitchel et al. demonstrated the power of this
approach in identifying a measurable effect of PCP treatment on the social behaviour
of rats [15]and used a similar approach to quantify social effects in a mouse model of
Autistic Spectrum Disorder [10]

a) b)

AI offers a bright future for translational research: It enables a new set of
behavioural, histopathological and molecular endpoints produced from
preclinical studies that can be more readily reconciled with the biomarkers
provided by the clinical stages of drug development. We can therefore expect
a more direct translation between the clinic and the biomarkers of disease and
of drug efficacy at the preclinical stage. This will reduce the risk and cost
associated with drug development and allows for less subjectivity in the trial
process. How these methods are implemented is vitally important: While
measuring average cage level events is certainly useful, one must recognise
the risk in averaging across individuals: It is easy to imagine a scenario where
three animals, one ‘normal, one ‘hyperactive’ and one ‘hypoactive’ appear,
when averaged, as all normal. Moreover, recovering and tracking the
individual identity allows us to extract pair-wise social interactions (see Figure
1) which are powerful biomarkers for both welfare and efficacy.



Figure 2. A) In ActualHCA, each individual animal is assigned a unique identifier (from
its RFID tag) which allows a scientist to go back to the time of any event (as defined
by the data) in the home cage and focus on the behaviours and functions of that
specific animal. AI allows us to simultaneously track complex behaviours in the home
cage but also allow us to single out one animal and potentially define alarms for
if/when this animal deviates from an expected “normal” in the home cage. B) The
architecture of the Actual Analytics system supports remote viewing. This allows for
a referral to scientists, technicians and veterinarians as well as other collaborators
through a live, remote video connection and also through the exportation/sharing of
all processed video and analogue data in standard open formats.

Enabling Ethical Research – Addressing the 3Rs
The 3Rs (Replacement, Reduction and Refinement) provide the ethical
framework for the treatment of laboratory animals and underpin the modern
approach to developing experimental studies involving animals [16][17].
Using AI and machine learning to track and check the wellbeing of animals in
the system goes beyond simple locomotor activity monitoring and extends to
include eating and drinking behaviour, measurement of stereotactic and social
behaviours all of which are indicative of quality of life. The ability to have an
incident, or a set of incidents, recorded with a time stamp allows the scientist
to go back to the scene of the incident and observe what was happening in
the cage at that time. This allows us to remotely view, without handling or
otherwise disrupting the animals, the individual events and social
relationships in the home cage. A unique identifier for each animal allows us
to quickly discern the nature of the problem and where required intervene or
look for external sources which may include noise, light and operator
behaviours in the vivarium. 



Figure 3. Examples of some key home
cage functions and behaviours
measured by ActualHCA. These
measures can all be used singly and
used to monitor each animal within the
social group or can be combined to
form more complex digital biomarkers
which can track quality of life for
welfare monitoring or in different
combinations may be used to track
efficacy.

In a similar vein, the monitoring of an individual in a human clinical trial is of
primary importance to the success, or the failure of that trial. This monitoring
is important in terms of compliance as well as the ability of trial operators to
pick up any previously unsuspected safety issues with the test article. Failed
clinical trials, often show, in retrospect, the unsuitability of certain individuals
in clinical trials [18] – especially when the trial has become under powered
due to patient drop out [19]. Given the importance of the individual in the
clinic it is surprising that individual animal data in pre-clinical in vivo testing
stage appears to be frequently overlooked.  The development of AI methods
in this area offers a credible solution, but this in turn requires high-quality data
streams capable of revealing subtle behavioural variations.

Recognising its potential in underpinning a new generation of pre-clinical
models, Actual Analytics has pioneered the longitudinal monitoring of rodents
in their home cage. ActualHCA provides comprehensive longitudinal data
streams from group housed rats or mice during the in vivo phases of safety
and efficacy studies. The ability to monitor spatial position and locomotor
activity and derive metrics from this which can be analysed are inherent
within ActualHCA, as they are with other similar products with the major
difference being that ActualHCA measures these with respect to each
individual within a social group. The contribution of other behaviour
parameters provides a unique insight into each animal in the cohort and the
dynamic changes that happen during studies.



Conclusion
Home cage monitoring already offers clear and convincing 3Rs benefits while
enhancing data quality and quantity. The story is not complete, and a
promising future lies ahead. AI methods such as those discussed here provide
the potential to monitor new behavioural biomarkers, delivering new
capabilities and even to be expanded to permit the integration of new data
sources. It is the explicit intention of Actual Analytics and its partners to
disrupt, elaborate and improve on the science produced in the preclinical
phases of drug development using AI applied through the ActualHCA platform.

Figure 4 The 3Rs principles and the benefits of continuous automated home
cage monitoring
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